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Abstract— This work addresses the problem of denoising 

multiple measurement vectors having a common sparse 

support. Such problems arise in a variety of imaging problems, 

e.g. color imaging, multi-spectral and hyper-spectral imaging, 

multi-echo and multi-channel magnetic resonance imaging, etc. 

For such cases, denoising them piecemeal, one channel at a 

time, is not optimal; since it does not exploit the full structure 

(joint sparsity) of the problem. Joint-sparsity based methods 

have been used for solving such problems when the sparsifying 

transform is assumed to be fixed. In this work, we learn the 

sparsifying basis following the dictionary learning paradigm. 

Results on multi-spectral denoising and multi-echo MRI 

denoising demonstrates the superiority of our method over 

existing ones based on KSVD and BM4D. 
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I.  INTRODUCTION  

Mathematically additive noise is modelled as follows: 

y x n       (1) 

Here x is the clean image (to be recovered), n is the noise 
corrupting the image and y is the noisy obtained noisy 
image. The problem is to recover x given y and the noise 
characteristics of n.  

This (1) is a single measurement vector problem. 
Denoising grey-scale digital images or X-ray images or MRI 
images fall under this category. However in a lot of 
problems, multiple structured or correlated measurements 
are available – these are multiple measurement vector 
(MMV) problems. For example in color imaging we have 
three channels – red, green and blue. These three channels 
are highly correlated with each other. Multi-spectral and 
hyper-spectral are extensions of color imaging, where the 
acquired bands stretch well beyond the visible range. Owing 
to the low spectral (band) gap (typically 5 to 10 nm for 
hyper-spectral images) images obtained at these bands are 
highly correlated with each other. Similar examples arise in 
multi-echo MRI [1] and multi-channel parallel MRI [2, 3].  

All the aforesaid modalities are known to be corrupted 
by additive Gaussian noise. For such problems, the noise 
model for MMV can be expressed as follows: 

Y X N       (2) 

Here 1[ | ... | ]MY y y and 1[ | ... | ]MX x x are multiple 

vectors. Moreover the multiple vectors X, to be recovered 
are correlated.  

There are two ways to account for the correlation in the 
sparse recovery framework. One way is to ‘whiten’ or get 
rid of the correlation by some transform. This is the so 
called Kronecker Compressed Sensing formulation [5]. Here 
one transform sparsifies the vectors channel wise, and 
another transform whitens the inter-channel correlation. The 
other approach is to explicitly account for this correlation. It 
is assumed that owing to the correlation and structural 
similarity the positions of the non-zero values in the 
transform domain will remain same for all the vectors. This 
is the joint-sparsity assumption. This is the model of interest 
in this work.  

Most traditional works in sparsity based denoising 
assumed the sparsity basis to be defined a priori, for 
example it can be the wavelet transform or the discrete 
cosine transform. Such transforms are generic and can 
sparsely represent varied class of signals; starting from 
digital photographs to medical images to speech and 
biomedical signals. Usually the denoising ability is limited 
by the sparsification capacity of these transforms; the 
sparser the representation, the better is the denoising 
performance. Such generic sparsifying transform, although 
applicable to a large class of signals, are not the best for any 
particular problem. Recent success of dictionary learning 
based techniques (such as [6]) empirically prove that.  

In this work we learn the sparsity basis adaptively 
following the dictionary learning framework. We learn the 
dictionary such that it is capable of accounting for inter-
channel correlations in the form of joint-sparsity. We will 
show that our method outperforms existing techniques for 
denoising multiple measurement vectors. Experiments have 
been carried out on multi-spectral imaging and multi-echo 
magnetic resonance imaging (MRI). 

II. LITERATURE REVIEW  

A. Kronecker Sparsity 

Images are locally correlated. Sparsifying transforms like 
DCT and wavelet whitens the local correlation leading to a 
few high valued coefficients and the remaining coefficients 
are near about zero. This is why grey-scale or any single 
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channel image can be represented in a sparse fashion. 
Incorporating transform domain sparsity in (1) leads to: 

Ty S n       (3) 

where S is the sparsifying transform, assumed to be either 
orthogonal or tight framed.  

For the single measurement problem, denoising can be 
framed as, 

2

12
min Ty S


        (4) 

This is basically the classical wavelet thresholding 
technique to denoising [7]. Later extensions of this 
technique include [8, 9].  

For multiple measurements, one needs to account for the 
fact that the multiple measurement vectors are correlated. In 
Kronecker sparsity based techniques, this correlation is 
whitened as well. For example in hyper-spectral images, the 
variation of pixel values in the spectral direction is gradual; 
similarly in dynamic CT imaging the temporal variation is 
smooth. Such variations can be effectively sparsified using 
Fourier transform (or temporal differencing).  

Therefore in the multiple measurement vector model, 
one can apply a sparsifying transform S1 in the spatial 
direction and another transform S2 in the other (spectral / 
temporal) direction. The final sparse representation is 
A=S1XS2. Incorporating sparsity in both directions leads to, 

1 2

T TY S AS N       (5) 

This can be conveniently represented as a Kronecker 
product  (hence the name). 

2 1( ) ( ) ( )Tvec Y S S vec A vec N      (6) 

The standard thresholding type techniques can be 
applied to solve (6), since (6) is mathematically equivalent 
to (3).  

B. Joint-Sparsity 

The Kronecker formulation REMOVES inter-channel 
correlation. The other approach is to preserve this 
correlation and effectively model it. For example in color 
imaging, since the red, green and blue channels are highly 
correlated, the image structure is the same in all the 
channels, i.e. the positions edges do not vary. In such a case, 
if wavelet transform is applied to each of the channels 
separately, the coefficients will be jointly sparse. This is 
because wavelet (and all other sparsifying transforms) 
effectively encodes the edge information; it has high values 
at the edges and low values elsewhere. Since the positions 
of the edges remain the same in all the channels, the 
positions of the non-zero values also remain the same in the 
transformed representation. Hence, when stacked as 
columns, they are joint-sparse or row-sparse.  

One only needs to apply the spatial sparsifying transform 
to get A=S1X. The coefficient matrix A will be row-sparse. 
The recovery is expressed as, 

2

1 2,1
min T

FA
Y S A A      (7) 

The l2,1-minimization problem for solving joint-sparsity 
problems has been known in signal processing for long [10]. 
Such models have been successfully used in color imaging 
[11] and MRI [3].  

Both the Kronecker formulation and the joint-sparse 
formulation have their applicability and share of pros and 
cons. The Kronecker formulation can be used for capturing 
correlations that do not lead to joint-sparse structure, for 
example in dynamic medical imaging scenarios (MRI or 
CT). In such cases, the frames are the measurement vectors; 
since the content is changing, it does not lead to a block-
sparse formulation, but can be well sparsified by applying a 
Fourier or finite difference [12, 13] transform in the 
temporal direction.  

On the other hand for problems like parallel multi-
channel MRI or multi-echo MRI Kronecker formulation is 
not applicable. This is because the variation across the 
multiple vectors does not follow a specific patter; therefore 
one does not know what kind of transform to apply for 
whitening the inter-channel correlations. In such cases, 
joint-sparsity is the way to go.  

C. Dictionary Learning 

So far we have discussed techniques where the sparsifying 
transform is given / fixed. They have certain advantages like 
fast operators, orthogonality etc. However sparsity based 
denoising techniques is heavily dependent on the sparsifying 
capacity of the transform – sparser the representation, better 
the denoising. Such fixed transforms do not yield the best 
possible representation for a particular class of signals. One 
needs to learn the sparsifying basis adaptively. This is 
achieved via dictionary learning.  

One can learn the dictionary from generic image datasets 
and apply it for denoising a test image. However, there is no 
guarantee that such a basis (trained on a different set of 
images) will be the best representative for the test image. 
Therefore, in dictionary learning, one learns the basis from 
the image as it is denoising. For Gaussian denoising this is 
expressed as [6], 

2 2

2 2 0,Z,x
min  such that i i i
D

i

y x Px Dz z      (8) 

The first term is for data fidelity. The term within the 
summation sign is for learning the dictionary and the 
coefficients. Here Pi represents the patch selection operator. 
It selects a patch (overlapping / non-overlapping) so that it 
can be sparse represented (zi) by the dictionary D.  

To the best of our knowledge there is a single 
comprehensive study on dictionary learning based color 
image denoising [14]. Basically it is the dictionary learning 
equivalent of the Kronecker formulation (6); however it 
learns a global dictionary from the patches of all the 
channels.  



III. PROPOSED FORMULATION 

In this work we propose the dictionary learning 
equivalent of the joint-sparse formulation. For single 
measurement vector problems, dictionary learning expresses 
the data as a sparse linear combination of its atoms.  

i ix Dz       (9) 

Here xi denotes the ith patch. 

For multiple measurement vector, the ith patch will have 
components from different channels. In [14] a global 
dictionary is learnt for all the channels. This is expressed as 

1 1

... ...

i i

M M

i i

x z

D

x z

   
   

   
   
   

     (10) 

Here we have assumed M channels. Some refinements were 
proposed in [14] over this base model, but it produced 
negligible improvement (less than 0.5 dB). Note that the 
dictionary learnt in (10) is significantly larger than the one 
in (9). For example if we take 8x8 patches, assuming a 
redundancy of 2, the dictionary in (9) is of size 64x128; but 
in (10) this is 192x384.  

In this work we learn a single small dictionary, same 
size as (9), for all the channels. This is expressed as, 

1 1[ | ... | ] [ | ... | ]M M

i i i ix x D z z    (11) 

But instead of imposing only sparsity as in (9), (10), we 
impose joint-sparsity, i.e. we assume that the rows of the 
coefficient matrix will be row-sparse. The reason behind 
this assumption has been discussed before. In short, it 
preserves the structure of the problem.  

In order to address the color denoising problem, we 
incorporate group-sparsity into the grey-scale denoising 
formulation (8); this leads to, 

2 2

2 2,1,Z,
min i i iFD X

i

Y X P X DZ Z      (12) 

Here 
1[ | ... | ]M

i i iP X x x , is the patch selection operator on 

all the channels; 
1[ | ... | ]M

i i iZ z z . The l2,1-norm enforces 

row-sparsity. Note that instead of using an NP hard penalty 
like l0-minimization as in (8), we employ a convex surrogate 
l2,1-norm.  

This problem (12) has not been solved before. But is 
easy to solve using alternating minimization. This leads to 
the following sub-problems:  

2
P1:min i i FD

i

P X DZ  

2 2

2
P2:min i i FX

i

Y X P X DZ     

2

2,1
P3:min i i iFZ

i

P X DZ Z   

Sub-problems P1 and P2 are simple least squares 
minimization problems having an analytic solution in the 
form of pseudoinverse. Sub-problem P3 can be solved 
individually for each patch ‘i’.  

2

2,1
min

i
i i iFZ

PX DZ Z     (13) 

This can be solved efficiently using the modified iterative 
soft thresholding [15].  

In this work we have used the standard redundancy of 2 
in designing all the dictionaries. The dictionaries are 
initialized by concatenating an orthogonal Haar wavelet and 
a DCT transforms. This is a departure from prior dictionary 
learning techniques that uses a random subset of the patches 
for the same. The number of iterations (number of times the 
sub-problems are solved) is fixed at 20.  

IV. EXPERIMENTAL RESULTS 

We carry out two sets of experiments. The first one is on 
multi-spectral image denoising and the second on multi-
echo MRI denoising. In all the experiments, over-lapping 
patches of 8x8 were taken. The values in the overlapping 
regions were averaged. This applies to both our proposed 
techniques as well as KSVD [14]. Both of them use the 
standard redundancy of 2.  

A. Multi-spectral Denoising 

The experimental results were carried out on a well 
known CAVE multi-spectral imaging dataset [16]. The 
experiments were carried out on the four images - balloons, 
pompoms, cd_ms, clay_ms, chart and toys, feathers, glass 
tiles, sponges, flowers and bead. Experiments have been 
carried out on all 31 bands of each image.  

Comparison has been carried out with the KSVD based 
technique proposed in [14]. In the aforesaid work [14], 
thorough experimentation had been carried out with other 
learning based methods like markov random fields [17]; it 
was found that the KSVD techniques yields significantly 
superior results. It is common knowledge that KSVD 
provides significantly better results than sparsity based 
techniques using fixed transforms; hence such techniques 
(e.g. wavelet denoising, TV denoising) are not compared 
here. We also compared against BM4D [18] – this is the 
state-of-the-art for denoising volumes.  

The comparative results are shown in Table I. Owing to 
limitations in space, we are only showing SSIM (structural 
similarity index) [19] values; PSNR shows similar trend. 
Results are shown for Gaussian noise having σ=30 and 
σ=50.  

TABLE I. SSIM FOR DIFFERENT TECHNIQUES FOR 31 BANDS 

Image Proposed KSVD [14] BM4D [18] 

σ=30 σ=50 σ=30 σ=50 σ=30 σ=50 

balloons 0.86 0.75 0.82 0.67 0.84 0.70 

pompoms 0.86 0.76 0.81 0.67 0.84 0.71 

cd_ms 0.86 0.73 0.81 0.65 0.84 0.69 

clay_ms 0.77 0.60 0.75 0.57 0.76 0.59 

chart & toys 0.75 0.59 0.74 0.57 0.74 0.57 

feathers 0.80 0.66 0.77 0.61 0.79 0.64 



glass tiles 0.82 0.68 0.79 0.64 0.81 0.67 

sponges 0.87 0.74 0.82 0.58 0.85 0.63 

flowers 0.79 0.58 0.74 0.57 0.76 0.58 

bead 0.71 0.59 0.73 0.58 0.71 0.59 

The results show that except for the last image (where 
we are only marginally inferior), our method yields results 
superior to both the methods compared against. For visual 
clarity, the first four bands of the balloons image is shown in 
the Fig. 1. The images corroborate the numerical results. 
Visually, our proposed method gives almost perfect 
denoising, whereas KSVD and BM4D show severe artifacts.  

     

Fig. 1. Left to Right –  Original , Noisy, Proposed, KSVD and BM4D 

B. Multi-echo MRI Denoising 

The experimental evaluation was carried out on ex-vivo 
and in-vivo T2 weighted images of rat’s spinal cord. The 
data was collected with a Bruker 7T MRI scanner. The 

original data consisted of a series of 32 echoes acquired with 
a Carr-Purcell-Meiboom-Gill (CPMG) sequence with 
increasing echo time (first echo was acquired with 6.728 ms 
echo time, and consecutive echoes with the echo spacing of 
6.738 ms). The data has been collected at the University of 
British Columbia.  

For simulation studies, Gaussian noise (σ=10 and σ=20) 
is added in the Fourier domain (as is the physical principal 
in MRI) and the images are reconstructed by inverse Fourier 
transform. The output is complex since both the phase and 
the magnitude are preserved.  

We compare our proposed technique with the same set 
of methods as before – KSVD [14] and BM4D [18]; both 
have been used before for denoising medical images. In 
these experiments, we report the SSIM from various 
techniques in Table II. 

TABLE II. SSIM FOR DIFFERENT TECHNIQUES 

Image Proposed KSVD [14] BM4D [18] 

 σ=20 σ=30 σ=20 σ=30 σ=20 σ=30 

In-vivo 0.92 0.85 0.87 0.81 0.89 0.84 

Ex-vivo 0.90 0.84 0.84 0.80 0.89 0.81 

The results corroborate the superiority of our method. 
For both the datasets, we give better results than KSVD and 
BM4D. For qualitative evaluation the results are shown in 
Fig. 2. In medical imaging it is customary to show both the 
recovered as well as the difference (between original and 
recovered) image. The difference image shows the recovery 
artifacts. These (one image each from the in-vivo and ex-
vivo datasets) are shown in Fig. 2. It can be seen that the 
KSVD shows severe denoising artifacts; the artifacts are less 
pronounced in BM4D (but still visible in a good quality 
monitor). But with our proposed reconstruction, the artifacts 
are not palpable; the recovery is visually perfect.   

       

       
Fig. 1. Top – In-vivo; Bottom – Ex-vivo. Left to Right –  Original , Difference KSVD, Recovered KSVD, Difference BM4D, Recovered BM4D, Proposed 
Difference and Proposed Recovered 

V. CONCLUSION 

This work proposes a new adaptive technique for 
removing noise from multiple measurement vectors 
(MMV). Comparison has been done with existing state-of-
the-art – KSVD [14] for MMV and BM4D [18]. Our 
method excels over both.  

However it must be noted that our method is only 
suitable for problems where the structure remains the same 
for all the measurements. It cannot handle volumetric data 

or time varying data; whereas the other methods [14, 18] 
can. But this is also the reason, why our method excels for 
multi-spectral and multi-echo denoising (owing to better 
modeling of structure) where the others do not.  
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